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Abstract
Charge-stabilized colloidal spheres dispersed in weak 1:1 electrolytes are
supposed to repel each other. Consequently, experimental evidence
for anomalous long-ranged like-charged attractions induced by geometric
confinement inspired a burst of activity. This has largely subsided because
of nagging doubts regarding the experiments’ reliability and interpretation.
We describe a new class of thermodynamically self-consistent colloidal
interaction measurements that confirm the appearance of pairwise attractions
among colloidal spheres confined by one or two bounding walls. In
addition to supporting previous claims for this as-yet unexplained effect, these
measurements also cast new light on its mechanism.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A long-lived controversy was ignited 20 years ago by the suggestion [1, 2] that similarly
charged colloidal spheres need not repel each other as predicted by Poisson–Boltzmann
mean field theory [3, 4], but rather might experience a long-ranged attraction for each other
under some circumstances. Interest in this problem deepened when direct measurements of
colloidal interactions revealed just such attractions in micrometre-scale colloid in aqueous
dispersions at extremely low ionic strength [5]. Subsequent measurements demonstrated
that such anomalous like-charge attractions are only evident among spheres confined by
nearby charged surfaces, and not otherwise [6–8]. This observation effectively refuted the
originally proposed mechanism for like-charge colloidal attractions [8, 9], and other mean-
field mechanisms were excluded soon thereafter on theoretical grounds [10–13].

0953-8984/04/384145+13$30.00 © 2004 IOP Publishing Ltd Printed in the UK S4145

http://stacks.iop.org/JPhysCM/16/S4145


S4146 D G Grier and Y Han

When the search for more sophisticated attraction-generating mechanisms subsequently
failed to reach consensus, the experimental evidence came under renewed critical scrutiny.
Measurements of long-ranged attractions performed with optical tweezers near a single charged
wall [14] were demonstrated to have been sensitive to a previously unsuspected kinematic
coupling mechanism [15–17]. Suspicion thus was cast on all interaction measurements based
on optical tweezer manipulation in confined geometries [18]. Complementary interaction
measurements performed on colloidal dispersions in equilibrium are immune to kinematic
artefacts [5, 19–21, 16, 22]. However, they obtain pair potentials by inverting measured
pair correlation functions, a process involving various poorly controlled approximations. It
is conceivable that these methods could misinterpret oscillatory many-body correlations as
attractive or even oscillatory pair interactions [22]. Indeed, when particular care was taken
to avoid such artefacts in measurements on a carefully prepared model system, no sign of
anomalous attractions was seen [16]. These observations raise a disturbing question: could
the entire case for confinement-induced like-charge attractions be based on experimental
artefacts?

This article describes a new series of equilibrium colloidal interaction measurements
featuring novel tests for thermodynamic self-consistency. These measurements explicitly
address all of the aforementioned sources of experimental error and yield equilibrium pair
potentials with quantitative error estimates. Their results confirm that confinement by one
or two nearby glass walls induces long-range equilibrium attractions between nearby pairs
of charged spheres. Confinement-induced attractions appear both among the highly charged
polystyrene sulfate spheres that were the subject of the original round of experiments, and also
between more weakly charged silica spheres. Trends observed with variations in confinement
and electrolyte concentration shed new light on the attractions’ origin, suggesting a role for
non-monotonic correlations in the distribution of simple ions near charged surfaces.

2. The structure of colloidal monolayers

Our colloidal interaction measurements follow the general approach pioneered by Kepler and
Fraden [5] and Vondermassen et al [19], in which digital video microscopy is used to measure
the distribution of spheres in a dispersion at equilibrium. Figure 1 shows our implementation
schematically. An aqueous charge-stabilized dispersion fills a hermetically sealed slit pore
between a glass microscope slide and a coverslip. The confined dispersion is allowed to
equilibrate with reservoirs of mixed-bed ion exchange resin to a base concentration of roughly
1 µM. Controlling the pressure of a buffer gas in these reservoirs also permits the spacing
H between the walls to be adjusted and maintained constant over the course of an hour-long
measurement [8]. Residual contaminant ions are believed to consist of sodium ion leached
from the glass, and carbonate infiltrating from the atmosphere, both of which are monovalent.
The glass surfaces develop large negative charge densities [17] that repel negatively charged
colloidal spheres and prevent them from sticking under the influence of van der Waals attraction.
Depending on the resulting balance of forces on the spheres, the dispersion can be confined to
a monolayer at height h above the lower surface.

Spheres larger than a few hundred nanometres in diameter are readily imaged by
conventional bright-field microscopy. A detail from a typical video micrograph of σ =
1.58 µm diameter silica spheres appears in figure 1. The spheres’ centres can be tracked with
standard techniques of digital video microscopy [7], with accuracies of �x = �y = 30 nm
being achieved for these particles [23, 24]. The plot in figure 1 shows the trajectory of
a single sphere over one minute from the region indicated by the box overlaid on the
micrograph.
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Figure 1. Measuring the structure of colloidal monolayers.

The in-plane positions, r j(t), of spheres labelled by j in snapshots obtained over time t
can be compiled into the time-dependent particle density

ρ(r, t) =
N(t)∑
j=1

δ(r − r j (t)). (1)

The rest of our results are extracted from ρ(r, t).
For example, individual trajectories can be analysed with the Einstein–Smoluchowsky

relation

P(δk |t) = exp

(
− (δk − vk t)2

2Dkt

)
, (2)

which describes the probability of finding particles displaced by distance δk = 〈r j (t)−r j(0)〉k

along the kth coordinate after time t . Fitting to equation (2) yields the particles’ diffusion
coefficients Dk and mean drift velocities vk . For an equilibrated isotropic system, we expect
identical diffusion coefficients in orthogonal directions and no overall drift. These conditions
are met for all of the data sets presented below, with maximum drift speeds below 0.3 µm s−1

and typical speeds far smaller.
Provided care is taken to account for the finite field of view and the varying number N(t) of

particles within it [25, 16, 23], ρ(r, t) can be summarized with the radial distribution function

g(r) = 1

n2

〈
ρ(r − r′, t)ρ(r′, t)

A(r)

〉
, (3)

where the angle brackets indicate an average over the field of view, over angles, and over time,
and where n = N/A is the areal density of N = 〈N(t)〉 particles in area A, and A(r) is the
area within the field of view over which pairs separated by r might be found.

3. Liquid structure inversion

The Boltzmann formula,

g(r) = exp(−βw(r)), (4)
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relates the radial distribution function for an isotropic system in equilibrium to the potential of
mean force w(r) associated with its structure. Here, β−1 = kBT is the thermal energy scale
at absolute temperature T . The potential of mean force can be identified with the system’s
underlying pair potential only in the limit of infinite dilution,

u(r) = lim
n→0

w(r). (5)

At higher densities, simple crowding can induce layering, and thus oscillatory correlations,
even in a system whose pair interactions are monotonically repulsive. Interpreting the effective
inter-colloid interaction is still more problematic. The spheres’ dynamics reflect not only
their direct Coulomb repulsions, but also the influence of a sea of atomic scale simple ions,
whose distribution also depends on the spheres’ comparatively enormous charges and excluded
volumes. The effective interaction between two spheres reflects a thermodynamicaverage over
the simple ions’ degrees of freedom. This almost certainly will depend on the distribution of
other spheres at higher sphere concentrations. Under such circumstances, the effective pair
potential would not be well defined. At lower concentrations, however, the dispersion’s free
energy can be described as a superposition of pairwise interactions.

For all of these reasons, non-monotonic dependence of βw(r) = − ln g(r) on separation
r need not signal the onset of attractive interactions. Particularly in systems with long-
ranged repulsive interactions, care must be taken to correct for many-body correlations.
Unfortunately, no exact relationship is known between u(r) and w(r) at finite concentrations,
even if the functional form of u(r) is available. Instead, two strategies for inverting g(r) have
emerged, one involving molecular dynamics or Monte Carlo simulations to refine trial pair
potentials [5, 26], and the other exploiting results from liquid structure theory to correct for
many-body correlations [20, 16]. The results from either approach may be identified with the
underlying pair potential thanks to Henderson’s uniqueness theorem [27].

We will avail ourselves of the Ornstein–Zernicke liquid structure formalism to invert
g(r) [28], building upon the pioneering work of Carbajal-Tinoco et al [20]. When applied to
the spheres in a colloidal dispersion, the Ornstein–Zernicke equation describes how effective
interactions among neighbouring spheres give rise to structural correlations. In principle, it
describes a hierarchy of N-body correlations emerging from pairwise interactions. Truncating
the hierarchy yields analytically tractable approximations, whose predictions are increasingly
accurate at lower densities. Two of these approximations, the hypernetted chain (HNC)
and Percus–Yevick (PY) equations, have been found to accurately describe the structure
emerging from computer simulations of systems with long-range (HNC) and short-range (PY)
interactions. For two-dimensional systems, these are most conveniently expressed as

βu(r) = βw(r) +

{
nI (r) (HNC)

ln[1 + nI (r)] (PY),
(6)

where the convolution integral

I (r) =
∫ [

g(r ′) − 1 − nI (r)
] [

g(|r′ − r|) − 1
]

d2r ′ (7)

can be solved iteratively, starting with I (r) = 0 [29]. Evaluating I (r) directly rather
than with numerical Fourier transforms minimizes the sensitivity of u(r) to noise in g(r).
This implementation has been shown to be both accurate and effective in previous related
studies [16, 23, 24].

4. Interactions and the DLVO theory

Figure 2 shows typical results for pair potentials obtained from measured radial distribution
functions with both the HNC and PY approximations. The data plotted as circles in figure 2(a)
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Figure 2. Measured interactions in confined monolayers of (a) silica spheres σ = 1.58 µm in
diameter and (b) polystyrene spheres σ = 0.652 µm in diameter. The silica spheres are sedimented
into a monolayer at height h = 0.9 µm above the lower wall. The two data sets in (a) were
obtained at areal density nσ 2 = 0.0654 for H = 9 µm and nσ 2 = 0.0797 for H = 195 µm.
The polystyrene spheres, by contrast, are confined to the midplane between parallel glass walls
separated by H = 1.3 µm, with nσ 2 = 0.056.

were obtained for silica spheres σ = 1.58 µm in diameter in slit pores of height H = 195
and 9 µm. Silica’s density is twice that of water, and these spheres sediment into a monolayer
with their centres at h = 0.9 µm above the lower glass wall, with out-of-plane excursions
estimated [16] to be no greater than δh = 0.1 µm. This system was originally proposed
as a model for studying attractions mediated by a single wall in equilibrium [16]. Indeed,
the data obtained for a confined monolayer at H = 9 µm exhibit a strong and long-ranged
attraction [23]. The pair potential measured at H = 195 µm, however, is monotonically
repulsive [16, 23]. This observation raises substantial questions regarding the nature of the
more distant wall’s influence.

The purely repulsive potential in figure 2(a) is described very well by the screened-
Coulomb form predicted by the classic Derjaguin–Landau–Verwey–Overbeek linearized
mean-field model for colloidal electrostatic interactions [3, 4]:

βu(r) = Z 2λB

(
exp(κa)

1 + κa

)2 exp(−κr)

r
. (8)

Here, Z is the effective valence of a sphere of radius a = σ/2, λB = βe2
0/(4πε) is the Bjerrum

length for a medium of dielectric constant ε at temperature T , where e0 is the elementary
charge, and κ−1 is the Debye–Hückel screening length given by κ2 = 4πλBn0 in an electrolyte
with a concentration n0 of monovalent ions. Fitting to the H = 200 µm data in figure 2(a)
yields a charge number Z = 6500 ± 1000, in good agreement with the predictions of charge
renormalization theory [17], and screening length κ−1 = 180 ± 10 nm consistent with the
system’s estimated micromolar ionic strength. Comparable results are obtained for monolayers
at areal densities ranging from nσ 2 = 0.04 to 0.10, suggesting that the result is independent of
density, and that the liquid structure inversion correctly accounts for many-body correlations
in this concentration range. All other results reported here were obtained under comparable
conditions.

The observation of DLVO-like repulsions in a weakly confined silica monolayer is
consistent with previous reports on this system [16]. It also demonstrates that our methods do
not necessarily yield non-monotonic potentials in this range of experimental conditions. When
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Figure 3. Various consequences of the generalized temperature definition for selected choices of
the arbitrary vector field B(Γ).

viewed in this light, the appearance of an attractive minimum in the pair potential for the more
tightly confined but otherwise identical monolayer at H = 9 µm seems more credible than it
otherwise might [23, 24]. The observation of attractions in silica colloid breaks the monopoly
on anomalous attractions held by the substantially more highly charged polystyrene sulfate
spheres used in previous studies [5, 6, 8, 20].

Such indirect verification does not make the result any less surprising, however. The
potential’s minimum is roughly 0.3 kBT deep at a centre-to-centre separation of r = 2.4 µm.
The interaction’s attractive component thus is substantially longer ranged than the core
electrostatic repulsion, and measurably influences colloidal dynamics at distances extending
to tens of screening lengths. This greatly exceeds the range of like-charge macromolecular
attractions ascribed to polyvalent counterions, counterion correlations, or fluctuations in the
counterion distribution. Still more puzzling is that a wall separated from the monolayer by
nearly 8 µm can qualitatively transform the spheres’ apparent pair potential.

Comparably strong and long-ranged attractions are evident in the data plotted in figure 2(b),
which were obtained for polystyrene spheres σ = 0.652 µm in diameter confined to the
midplane between glass walls separated by H = 1.3 µm. These data are consistent with all
previous observations of like-charge attractions in confined polystyrene [5, 20, 8], including
those involving optical tweezers [8].

As an additional reliability check, results for the polystyrene data are plotted using both
the HNC and PY approximations. Their quantitative agreement suggests that the monolayer’s
areal density is low enough for the liquid structure formalism to account accurately for many-
body correlations in g(r). Indeed, there is little difference between w(r) and u(r) for this
data set. We calculate the difference �uL(r) between the HNC and PY approximations for
each data set and add it in quadrature to other sources of uncertainty to estimate errors in the
reported u(r).

By far the largest source of error results from experimental uncertainties in g(r). These,
in turn, result from errors in measuring the particle position and from counting statistics.
Assessing the latter turns out to be somewhat subtle and establishes the lowest practical areal
density n at which a reliable measurement can be made.
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The subtlety hinges on the following question: How many snapshots are required to
ascertain whether or not the particles interact at all? In other words, how many pairs would
we expect to see at the centre-to-centre separation r in a non-interacting system? Given
a spatial resolution dr for binning particle separations into the radial distribution function,
this number is 2πn2 Ar dr . Typically, the number N = n A = O(100) of particles in the
field of view A is so small that the expected number of pairs would be unacceptably small.
Combining data from M statistically independent snapshots reduces the associated error in
g(r) to �(s)g(r) = g(r)/(2πn2 AMr dr).

Errors due to uncertainties in particle location can be calculated as �(m)g(r) =
2 ∂r g(r) �x , where �x is the error in locating a single particle’s centroid in each dimension.
The radial derivative of g(r) can be computed numerically from the experimental data, which
is binned to resolution dr . Typically, �x � dr , so that �(m)g(r) � �(s)g(r).

Even though the particles’ out-of-plane excursions are small, they also contribute to errors
in g(r) through projection errors, especially near contact. Out-of-plane fluctuations δh make
the particles appear to be closer than they actually are. The error in apparent particle separation
falls off with separation as �r = (δh)2/r . In practice, we combine this contribution in
quadrature with the estimated error due to inaccuracies in particle tracking, 2�x , in computing
�(m)g(r).

Combining �(m)g(r) and �(s)g(r) in quadrature establishes the range of possible values
of g(r) for a given sample, restricted only by the requirement that g(r) � 0. We compute
trial pair potentials in both the HNC and PY approximations using both the upper and lower
bounds on g(r) as inputs. The resulting lower and upper estimates on u(r) then are added
in quadrature with the systematic error due to differences in HNC and PY results to obtain
estimates for the upper and lower error bars on u(r). Typical results appear in figure 2, and
establish that the minima reported in these data are indeed clearly resolved by our methods,
even if the error bounds near contact are substantial.

5. Thermodynamic self-consistency: configurational temperature

Despite the care taken to estimate and eliminate sources of error in these measurements, using
equations (6) and (7) to interpret experimental data might be criticized for its uncontrolled
approximations: equations (6) and (7) can converge numerically to an answer even when
applied well beyond their domain of validity. Assessing the bounds of this domain can be
problematic if the form of the pair potential is not known a priori. Applying liquid structure
theory to experimental data also requires the assumption of pairwise additivity. Nonadditivity,
however, would have no obvious signature in the results. Other unintended processes such as
nonequilibrium hydrodynamic coupling also can yield reasonable-looking results that could be
mistaken for an equilibrium pair interaction [30]. Consequently, the appearance of qualitatively
new features in any particular measurement of u(r) could signal a failure in the method. For this
reason, most published accounts have relied upon comparisons among several related systems
to bolster their conclusions regarding trends in confinement-mediated interactions. These
comparisons are themselves subject to question because the ultraclean chemical environments
required for these studies are difficult to alter in a predictable manner.

To address all such concerns, we have introduced [24] methods to assess whether or not a
trial pair potential describes a system’s interactions in a thermodynamically self-consistent
manner. Our approach is based on the recently introduced notion of a configurational
temperature, which has found widespread applications in simulations [31, 32], but has not
previously been applied to experimental data [24].
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The temperature of an equilibrium ensemble of particles is defined conventionally in
terms of the particles’ mean kinetic energy, without regard for their instantaneous positions. In
1997, Rugh pointed out that the temperature can also be expressed as ensemble averages over
geometrical and dynamical quantities [33]. This notion is expressed more generally [34, 35]
as

kBT = 〈∇H(Γ) · B(Γ)〉
〈∇ · B(Γ)〉 , (9)

where angle brackets indicate an ensemble average, Γ = {q1, . . . , q3N , p1, . . . , p3N } is the
instantaneous set of 3N generalized coordinates q j and their conjugate momenta p j for an
N-particle system, H(Γ) = ∑3N

j=1 p2
j/(2m) + V ({q j}) is the Hamiltonian associated with the

conservative N-particle potential V ({q j}), and B(Γ) is an arbitrary vector field selected so that
both the numerator and denominator of equation (9) are finite and the numerator grows more
slowly than eN in the thermodynamic limit. Figure 3 shows inter relationships among results
obtained with several choices for B(Γ). For instance, choosing B(Γ) = {0, . . . , 0, p1, . . . p3N }
yields the familiar equipartition theorem. Choosing instead B(Γ) = −∇V ({qi}) yields a
formally equivalent result,

kBTconfig = 〈|∇V |2〉
〈∇2V 〉 , (10)

which depends only on the particles’ instantaneous configuration, and not on their momenta.
Directly applying equation (10) requires the full N-particle free energy, which is rarely

available. Simplified forms emerge for systems satisfying certain conditions. For example, if
V ({qi}) is the linear superposition of pair potentials, u(r), then equation (10) reduces to [31]

kBTconF = −
〈∑N

i=1 F2
i

〉
〈∑N

i=1 ∇i · Fi
〉 , (11)

where Fi = − ∑
j �=i ∇i u(ri j) is the total force on particle i due to its interactions with other

particles, ∇i is the gradient with respect to the i th particle’s position, ri , and ri j = |ri − r j |
is the centre-to-centre separation between particles i and j . The temperature is reflected in
the instantaneous distribution of forces because objects explore more of their potential energy
landscape as the temperature increases.

Equation (11) may be generalized into a hierarchy of hyperconfigurational temperatures
by choosing B(Γ) = {Fs

i }:

kBT (s)
h = −

〈∑N
i=1 Fs+1

i

〉
〈
s
∑N

i=1 Fs−1
i ∇i · Fi

〉 , (12)

for s > 0. These higher moments are more sensitive to the input potential’s detailed structure
than TconF = T (1)

h . They also can be applied to three-dimensional systems with long-ranged 1/r
potentials, for which TconF is ill-defined. Equations (9)–(12) apply only in the thermodynamic
limit, with errors of O(1/N).

For systems with short-ranged potentials, dropping additional terms of O(1/N) from
equation (9) yields [34]

kBTcon1 = −
〈 ∑N

i=1 F2
i∑N

i=1 ∇i · Fi

〉
, (13)

and

kBTcon2 = −
〈∑N

i=1 ∇i · Fi∑N
i=1 F2

i

〉−1

, (14)
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Figure 4. (a) Estimating the range over which interactions affect the configurational temperature
for the silica data at H = 9 µm. (b) Finite-size scaling of several variants of the configurational
temperature for the silica data at H = 9 µm. Solid curves are fits to third-order polynomials in
1/N showing extrapolations to the thermodynamic limit.

the second of which was proposed in [24]. These definitions’ different dependences on sample
size N are useful for comparison with T (s)

h .
We apply the configurational temperature formalism to our colloidal monolayers by using

the measured particle locations ρ(r, t) and extracted pair potential u(r) as inputs to the various
definitions. Provided that the conditions for the configurational temperatures’ derivation are
met, then all variants will yield results consistent with each other and with the (known)
temperature T of the heat bath. In particular, consistent results emerge only if the system
is in local thermodynamic equilibrium, if its interactions are indeed pairwise additive, and if
the measured pair potential u(r) accurately reflects those interactions.

In practice, each snapshot of a monolayer’s configuration constitutes a measurement of its
configurational temperature. Particles near the edge of the field of view, however, may have
strongly interacting neighbours just out of the field of view whose contributions to their net
force would be overlooked. Including these apparently unbalanced forces would grossly distort
estimates of the configurational temperature. To avoid this, we calculate force distributions
only for particles whose relevant neighbours all lie within the field of view. Such particles lie
no closer than the interaction’s range R to the edge of the field of view. We estimate R from
u(r) and g(r) by computing

T (r)

T
= 2πβ

r

σ
g(r)

|∇u(r)|2
∇2u(r)

, (15)

an example of which is plotted in figure 4(a). This function may be interpreted as the
contribution to the configurational temperature due to particles separated by distance r . Quite
clearly, pairs with r > R ≈ σ contribute little if at all to the configurational temperature.

Truncating the field of view to avoid edge effects further reduces the number N of particles
in the field of view. This is problematic because all of the temperature definitions involve
approximations of O(1/N). Adopting a standard technique from simulation studies, we
deliberately subsample the available data, recalculate the configurational temperature on the
restricted data set, and extrapolate to the large N limit by fitting the result to a polynomial
in 1/N . Typical results appear in figure 4(b). Even though the different definitions have
substantially different dependences on sample size, they all extrapolate to the thermodynamic
temperature in the thermodynamic limit.
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This result turns out to be reassuringly sensitive to details of the pair potential.
The small residual scatter in the experimental u(r) is greatly magnified in calculating
the configurational temperature, particularly for the higher-order hyperconfigurational
temperatures. Consequently, the data in figure 2 were fitted to a fifth-order polynomial
whose coefficients were used in calculating the results shown in figure 4. Varying the
pair potential by as little as 1% in the region of the core repulsion increases the apparent
configurational temperature by more than 10%. Simply truncating the attractive minimum
in u(r) to mimic a purely repulsive potential leads to a 50% increase, or an error of
150 ◦C.

The successful collapse of the configurational and hyperconfigurational temperatures to
the thermodynamic temperature constitutes a set of stringent internal self-consistency tests for
the accuracy of the measured pair potential and its correct interpretation. When combined with
the considerations from the previous sections, we can improve the estimated resolution of our
pair potential to roughly 1/20 kBT . The observed confinement-induced attractions therefore
should be considered a real, pairwise additive contribution to the monolayers’ free energy, at
least in this range of ionic strength and areal density.

6. The role of confinement

We next investigate the role of geometric confinement in inducing like-charge attractions in
sedimented silica monolayers. Figure 5 shows data from five different monolayers of silica
spheres (σ = 1.58 µm) in slit pores ranging in depth from H = 195 µm down to 3.2 µm.
Figure 5(b) shows the associated configurational temperatures. For all inter-wall separations,
the monolayer is sedimented at roughly h = 900 nm, with the only obvious difference being
the inter-wall spacing. Well-resolved attractive minima are evident for plate separations as
large as H = 30 µm.

This observation contrasts with measurements on more highly charged polystyrene sulfate
spheres, for which anomalous attractions appear only when the spheres are rigidly confined
to the midplane, at separations no larger than H = 4σ [8]. This difference may be due to
the silica spheres’ proximity to the lower wall. Why then would attractions not be evident at
H = 200 µm [16, 23, 24]? More to the point, why would a second wall at H = 20σ make a
difference? Trends in figure 5(a) suggest an explanation.

One prominent feature of these data sets is that the apparent range of the core repulsion
moves monotonically to smaller r as the inter-wall separation decreases. This differs from
the results of optical tweezer measurements on polystyrene spheres, in which the depth
of the attractive minimum varies with H , but not the range of the repulsion [8]. It is
tempting to ascribe the trend in our silica data to a decrease in the effective Debye–Hückel
screening length as the ratio of surface area to volume increases and diffusive contact with
the ion exchange reservoirs diminishes. If this were the case, however, we would expect the
slope of u(r) near contact to decrease monotonically also. Instead, there is no discernible
trend.

Referring to the DLVO result in equation (8) for guidance, it would appear that the spheres’
effective charge Z is the only other parameter that might be free to vary. Such variation is
consistent, at least qualitatively, with the predictions of charge renormalization theory [17]
for silica spheres near charged silica surfaces. It would also explain the different behaviour
of polystyrene spheres whose more acidic surface groups are not so susceptible to charge
regulation by nearby surfaces [17]. However, it leaves open the question of why an attraction
appears at all.
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Figure 5. (a) Measured pair potentials for monolayers of silica spheres 1.58 µm in diameter
sedimented to a height h = 900 ± 100 nm above a glass surface for a variety of inter-wall
separations, H . The solid curves are fits to equation (16) with parameters tabulated in table 1.
The inset schematically represents the space charge model for confinement-induced attractions.
(b) Configurational temperatures for each of the interaction measurements.

7. Speculation: space-charge mediated attractions

A variety of mechanisms beyond Poisson–Boltzmann mean field theory have been proposed
for confinement-induced attractions among like-charged colloid. These include attempts to
compute London-like attractions due to fluctuations in the distribution of simple ions around the
large spheres [36] and density functional analysis of high-order correlations in the distribution
of large and small ions [37, 18]. The few that appear to reproduce experimental observations
[38, 37] have proved controversial [39, 40], and none of the more widely accepted calculations
predicts an attraction of the range and strength observed experimentally, particularly if the
simple ions are monovalent. Nor have computer simulations yet been able to address the
regime of large charge asymmetry that appears to be necessary for this effect. Other approaches,
however, may shed light on these anomalous interactions.
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Table 1. Interaction parameters obtained from fits to the space charge model.

H (µm) Z κ−1 (µm) q

195 7000 ± 400 200 ± 20 3 ± 3
30 2500 ± 150 160 ± 20 10 ± 2
18 2400 ± 150 140 ± 20 13 ± 3
9 800 ± 100 150 ± 25 13 ± 4
3.2 800 ± 100 150 ± 20 11 ± 2

The Kirkwood–Poirer formulation of electrolyte structure [41], for example, suggests
that the correlations between macroions and simple ions can become non-monotonic in the
strongly coupled regime. Hastings subsequently pointed out that these correlations in the
simple ion distribution would lead to local violations of electroneutrality in regions between
macroions [42], and that the resulting effective interaction between macroions would include
an attractive component. This result parallels the more recent thermodynamically consistent
liquid structure calculation by Carbajal-Tinoco and Gonzalez-Mozuelos [43].

If we hypothesize that the distribution of counterions extending away from a charged
surface also develops regions of space charge when modulated by nearby spheres, then the
effective inter-sphere interaction should include a term accounting for sphere–space charge–
sphere bridging. In the absence of a theory for the actual simple ion distribution, we model the
space charge’s influence as the screened coulomb interaction between the spheres’ effective
charges and a point charge of valence q centred between them:

βu(r) = Z 2λB

(
exp(κa)

1 + κa

)2 exp(−κr)

r
− 4ZqλB

exp(κa)

1 + κa

exp
(− 1

2 κr
)

r
. (16)

Fitting the data in figure 5(a) to this form yields remarkably good agreement, with fitting
parameters tabulated in table 1. The screening lengths in all cases are consistent with the
expected micromolar ionic strengths of our apparatus. The spheres’ effective charge number
appears to decrease systematically with wall separation in a manner at least qualitatively
consistent with charge regulation theory [17]. Most tellingly, the effective space charge
number is consistent with q = 10 at all separations. If this model is to be taken seriously,
this result suggests that the sedimented silica spheres are indeed influenced by the nearby
wall’s counterion distribution, and that the resulting attraction is evident only when the core
electrostatic repulsion is not too strong. Reducing the spheres’ effective charge exposes the
nascent attraction in this scenario. For the more highly charged polystyrene spheres, reducing
the wall separation has little effect on the spheres’ effective charge or the screening length, but
increases the concentration of counterions between the spheres.

This simple space-charge model appears to account for the available observations of
like-charge attractions between confined charge-stabilized spheres. Its interpretation points
toward a correlation-based explanation for the effect, albeit of an extraordinary range. The
measurements described in the present work should help to eliminate any remaining concerns
regarding the validity and accuracy of the larger body of measurements in the literature,
and their interpretation. The thermodynamically self-consistent measurement protocol we
introduce should also find applications in the broader context of experimental soft matter
research.
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